NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Printer-friendly Version

Interactive Discussion

Abstract

We present results of numerical experiments on long time evolution and collisions of breathers (which correspond to envelope solitons in the NLSE approximation) at the surface of deep ideal fluid. The collision happens to be nonelastic. In the numerical 5 experiment it can be observed only after many acts of interactions. This supports the hypothesis of "deep water nonintegrability". The experiments were performed in the framework of the new and refined version of the Zakharov equation free of nonessential terms in the quartic Hamiltonian. Simplification is possible due to exact cancellation of nonelastic four-wave interaction.

1 Introduction

Theory of weakly nonlinear waves on shallow water is a nursery for several completely integrable models. Among them the famous KdV and KP equations (Gardner et al., 1967; Kadomtsev and Petviashvili, 1973; Zakharov and Shabat, 1979), Boussinesq equation (Zakharov, 1974), Kaup system (Kaup, 1975). Detailed study of these integrable systems has not only theoretical, but also practical importance. Recently A. Osborne has shown (Osborne, 2010) that representation of solutions of KP equations in form of Jacobi theta-functions is a very efficient and economic way of analyzing of experimental data for long waves in coastal area.

Now the fundamental question appears - what can be done in the case of deep fluid? 20 So far only one integrable model on deep water is known. This is the focusing Nonlinear Schrodinger equation describing weakly-nonlinear quasimonochromatic wave trains (Zakharov, 1968; Zakharov and Shabat, 1972). Exact solutions of this equation can be also given by theta-functions (Belokolos et al., 1994). They are actively used now for determination of freak wave statistics (Osborne, 2010). However the NLSE has a limited area of application and hardly can be applicable to many experimental situations.

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Hopes that the exact Euler equation for potential flow on deep water with free surface in the presence of gravity is integrable appeared in 1994 when two of us (Dyachenko and Zakharov, 1994) established that coefficient of scattering matrix connecting asymptotic at $t \rightarrow \pm \infty$ states of wave field, corresponding to inelastic four-wave
$k+k_{1}=k_{2}+k_{3} \omega_{k}+\omega_{k_{1}}=\omega_{k_{2}}+\omega_{k_{3}}$,
where
$\omega_{k}=\sqrt{g|k|}$
in 1-D geometry is identically zero.
However this cancellation is just a weak necessary condition for integrability far from being sufficient. For integrability in its "strong sense" we need cancellation in all orders of perturbation theory (see Zakharov and Schulman, 1991). However in Dyachenko et al. (1995) it was shown that not all members of five-wave scattering matrix are zero, thus we can hope only integrability in some "weak sense". We will not discuss here this subject having a "strong mathematical flavor".

Meanwhile efficient methods for numerical simulations of exact Euler equation were been developed during last decade, massive numerical experiments were also performed. Again, some of them can be considered as certain indication of integrability.

In the frame of NLSE approximation we have an exact solution - envelope soliton.

Collisions of two breathers
A. I. Dyachenko et al.

Title Page

Printer-friendly Version

Interactive Discussion

In this article we present new numerical results shedding some light on integrability of the deep-water hydrodynamics. We study collision of breathers (solitons) in the frame of new derived approximate equation applicable for small amplitude waves with any spectral band width. Actually, this is what is called "Zakharov equation" (see Za5 kharov, 1968) improved by implementation of additional canonical transformation to the Poincare normal form. This transformation is possible only due to still the mysterious fact of four-wave interaction cancellation.

The new equation (described in details in Dyachenko and Zakharov, 2011, 2012) is very convenient for numerical simulations. It has nice solitonic solution which can not be so far found analytically.

In this paper we study collision of such solitons and show that this collision is nonelastic. But one can see it after multiple collisions only. We can interpret this fact as a numerical proof of nonintegrability at least for this "refined Zakharov equation"1.

2 Compact equation

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Title Page

Abstract

Conclusions

Tables
Figures

14

Back
Close
Full Screen / Esc

Printer-friendly Version
Interactive Discussion
here $\eta(x, t)$ - is the shape of a surface, $\phi(x, z, t)$ - is a potential function of the flow and g - is a gravitational acceleration. As was shown in Zakharov (1968), the variables

[^0]$\eta(x, t)$ and $\psi(x, t)=\left.\phi(x, z, t)\right|_{z=\eta}$ are canonically conjugated, and satisfy the equations $\frac{\partial \psi}{\partial t}=-\frac{\delta H}{\delta \eta} \quad \frac{\partial \eta}{\partial t}=\frac{\delta H}{\delta \psi}$.

Here Hamiltonian can be written as infinite series (see Zakharov, 1968):

$$
\begin{align*}
H= & \frac{1}{2} \int g \eta^{2}+\psi \widehat{k} \psi \mathrm{~d} x-\frac{1}{2} \int\left\{(\widehat{k} \psi)^{2}-\left(\psi_{x}\right)^{2}\right\} \eta \mathrm{d} x \tag{1}\\
& +\frac{1}{2} \int\left\{\psi_{x x} \eta^{2} \widehat{k} \psi+\psi \widehat{k}(\eta \widehat{k}(\eta \widehat{k} \psi))\right\} \mathrm{d} x+\ldots
\end{align*}
$$

5 It this article we consider Hamiltonian up to the fourth order. In the articles (Dyachenko and Zakharov, 2011, 2012) we applied canonical transformation to the hamiltonian variables ψ and η to introduce normal canonical variable $b(x, t)$. This transformation explicitly exploits vanishing of four-wave interaction and possibility to consider surface waves moving in the same direction. For this variable $b(x, t)$ Hamiltonian (Eq. 1) ac10 quires nice and elegant form ${ }^{2}$:
$\mathcal{H}=\int b^{*} \widehat{\omega}_{k} b \mathrm{~d} x+\frac{1}{2} \int\left|\frac{\partial b}{\partial x}\right|^{2}\left[\frac{i}{2}\left(b \frac{\partial b^{*}}{\partial x}-b^{*} \frac{\partial b}{\partial x}\right)-\widehat{K}|b|^{2}\right] \mathrm{d} x$.
In K-space Hamiltonian has the form:
$\mathcal{H}=\int \omega_{k}\left|b_{k}\right|^{2} \mathrm{~d} k+\frac{1}{2} \int \widetilde{T}_{k_{1} k_{2}}^{k_{3} k_{4}} b_{k_{1}}^{*} b_{k_{2}}^{*} b_{k_{3}} b_{k_{4}} \delta_{k_{1}+k_{2}-k_{3}-k_{4}} \mathrm{~d} k_{1} \mathrm{~d} k_{2} \mathrm{~d} k_{3} \mathrm{~d} k_{4}$

[^1]NHESSD
1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Title Page
Abstract
Introduction

Conclusions
References
Figures

14

Back
Close

Full Screen / Esc

Printer-friendly Version

Here
$\begin{aligned} \widetilde{T}_{k_{2} k_{3}}^{k k_{1}}= & \frac{\theta(k) \theta\left(k_{1}\right) \theta\left(k_{2}\right) \theta\left(k_{3}\right)}{8 \pi}\left[\left(k k_{1}\left(k+k_{1}\right)+k_{2} k_{3}\left(k_{2}+k_{3}\right)\right)\right. \\ & \left.-\left(k k_{2}\left|k-k_{2}\right|+k k_{3}\left|k-k_{3}\right|+k_{1} k_{2}\left|k_{1}-k_{2}\right|+k_{1} k_{3} \mid k_{1}-k_{3}\right)\right],\end{aligned}$
$\theta(k)= \begin{cases}0, & \text { if } k \leq 0 ; \\ 1, & \text { if } k>0 .\end{cases}$
$b(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} b_{k} e^{i k x} \mathrm{~d} x$
The Fourier transform is defined as follow:

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Title Page

Abstract

Introduction

Conclusions
References
Tables
Figures

Back
Close

Full Screen / Esc

Printer-friendly Version

or in K-space
$i \frac{\partial b_{k}}{\partial t}=\omega_{k} b_{k}+\int \widetilde{T}_{k k_{1}}^{k_{2} k_{3}} b_{k_{1}}^{*} b_{k_{2}} b_{k_{3}} \delta_{k+k_{1}-k_{2}-k_{3}} \mathrm{~d} k_{1} \mathrm{~d} k_{2} \mathrm{~d} k_{3}$.

3 Breathers and numerical simulation of its collisions

Breather is the localized solution of Eq. (5) of the following type:
$b(x, t)=B(x-V t) e^{i\left(k_{0} x-\omega_{0} t\right)}$,
where k_{0} is the wavenumber of the carrier wave, V is the group velocity and ω_{0} is the frequency close to $\omega_{k_{0}}$. In the Fourier space breather can be written as follow:
$b_{k}(t)=e^{-i(\Omega+V k) t} \phi_{k}$,
where Ω is close to $\frac{\omega_{k_{0}}}{2}$.
For ϕ_{k} the following equation is valid:
$\left(\Omega+V k-\omega_{k}\right) \phi_{k}=\int \widetilde{T}_{k k_{1}}^{k_{2} k_{3}} \phi_{k_{1}}^{*} \phi_{k_{2}} \phi_{k_{3}} \delta_{k+k_{1}-k_{2}-k_{3}} \mathrm{~d} k_{1} \mathrm{~d} k_{2} \mathrm{~d} k_{3}$.
One can treat ϕ_{k} as pure real function of k.
To solve Eq. (9) one can use Petviashvili iteration method ($n-$ is the number of iteration):
$\left(\Omega+V k-\omega_{k}\right) \phi_{k}^{n+1}=M^{n} \int \widetilde{T}_{k k_{1}}^{k_{2} k_{3}} \phi_{k_{1}}^{*} \phi_{k_{2}}^{n} \phi_{k_{3}}^{n} \delta_{k+k_{1}-k_{2}-k_{3}} \mathrm{~d} k_{1} \mathrm{~d} k_{2} \mathrm{~d} k_{3}$.

Petviashvili coefficient M^{n} is the following:

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Title Page
Abstract
Introduction
Conclusions
References
Tables
Figures

14
-I

Back

Close

Full Screen / Esc

Printer-friendly Version
$M^{n}=\left[\frac{\left\langle\phi_{k}^{n}\left(\Omega+V k-\omega_{k}\right) \phi_{k}^{n}\right\rangle}{\left\langle\phi_{k}^{n} \int \widetilde{T}_{k k_{1}}^{k_{2} k_{3}} \phi_{k_{1}}^{*}{ }^{n} \phi_{k_{2}}^{n} \phi_{k_{3}}^{n} \delta_{k+k_{1}-k_{2}-k_{3}} \mathrm{~d} k_{1} \mathrm{~d} k_{2} \mathrm{~d} k_{3}\right\rangle}\right]^{\frac{3}{2}}$.

Below we present a typical numerical solution of Eq. (9). Calculations were made in the periodic domain 2π with carier wavenumber $k_{0} \sim 64, V=1 / 16$ and $\Omega=4.01$. In the Figs. 1, 2, 3 one can see real part of $b(x)$, modulus of $b(x)$ and Fourier spectrum of $b(x)$.

To analyze the question about integrability of the Eq. (5) one can consider collisions of breathers. It might be elastic or nonelastic. To study breathers collision we performed the following numerical simulation:

- As initial condition we have used two breathers separated in space (distance was equal to π).
- First breather has the following parameters: $\Omega_{1}=4.01, V_{1}=1 / 16$. Carrier wave number appears to be ~ 64.
- For the second breather: $\Omega_{2}=4.51, V_{2}=1 / 18$. Carrier wave number appears to be ~ 81.

This initial condition is shown in Fig. 4. Its Fourier spectrum is shown in Fig. 5. After time $15 \frac{\pi}{\left(V_{1}-V_{2}\right)} \simeq 452.4$ breathers collides. In the Fig. 6 one can see breathers at the moment of collision ($t=452.4$). Fourier spectrum of two breathers at $t=452.4$ is shown in Fig. 7. And finally we show the picture of two breathers after 100 collisions at $t \sim 88000$ when they separated again at distance $\simeq \pi$. The initial condition and state after 100 breather collisions are shown in Fig. 8. Fourier spectrum of that is given in Figs. 9. One can see radiation after collisions in Fig. 10 that shows the zoomed profile of $|b(x)|$. During numerical simulation the total energy was conserved up to ninth digit after decimal point. So, the simulation demonstrates that after multiple collisions of breathers there appears radiation. It points on nonelastic collisions and nonintegrability of the Eq. (5).

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Title Page

Abstract

Introduction

Conclusions
References

Figures

14

4

Back
Close

Full Screen / Esc

Printer-friendly Version
Interactive Discussion

4 Conclusions

We see that individual breathers are not differ from NLSE solitons qualitatively. We have studied numerically interaction of two solitons with different values of carrier wave lengths. Interaction of such breathers cannot be described by the NLSE even approximately.

Interaction of such solitons happens to be nonelastic. This experimental fact requires additional study to prove nonintegrability analytically.

This new Eq. (5) can be generalized for the "almost" 2-D waves, or "almost" 3-D fluid. When considering waves slightly inhomogeneous in transverse direction, one can think in the spirit of Kadomtsev-Petviashvili equation for Korteveg-de-Vries equation, namely one can treat now frequency ω_{k} as two dimensional, $\omega_{k_{x}, k y}$, while leaving coefficient $\widetilde{T}_{k_{2} k_{3}}^{k k_{1}}$ not dependent on $y . b$ now depends on both x and y :
$\mathcal{H}=\int b^{*} \widehat{\omega}_{k_{x}, k_{y}} b \mathrm{~d} x \mathrm{~d} y+\frac{1}{2} \int\left|b_{x}^{\prime}\right|^{2}\left[\frac{i}{2}\left(b b_{x}^{\prime *}-b^{*} b_{x}^{\prime}\right)-\widehat{K}_{x}|b|^{2}\right] \mathrm{d} x \mathrm{~d} y$.
Acknowledgements. This work was supported by Grant of Russian Government N11.G34.31.0035 (leading scientist - Zakharov V.E., GOU VPO "Novosibirsk State University"). Also was it was supported by RFBR Grant 12-01-00943- a and RFBR Grant 12-05-92004-HHC_a, the Program "Fundamental Problems of Nonlinear Dynamics in Mathematics and Physics" from the RAS Presidium, and Grant 6170.2012.2 "Leading Scientific Schools of Russia".

1, 3023-3043, 2013

Collisions of two

 breathersA. I. Dyachenko et al.

Title Page

Abstract

Introduction

Conclusions
References

Figures

14

4

Back
Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion
elokolos, E. D., Bobenko, A. I., Enol'skii, V. Z., Its, A. R., and Matveev, V. B.: Algebrogeometric approach to nonlinear integrable problems, Springer Series in Nonlinear Dynamics, Springer- Verlag, Berlin, 337 pp., 1994. 3024
Dyachenko, A. I. and Zakharov, V. E.: Is free-surface hydrodynamics an integrable system?, Phys. Lett. A, 190, 144-148, 1994. 3025

Dyachenko, A. I. and Zakharov, V. E.: On the formation of freak waves on the surface of deep water, JETP Lett.+, 88, 307-311, 2008. 3025
Dyachenko, A. I. and Zakharov, V. E.: Compact equation for gravity waves on deep water, JETP Lett.+, 93, 701-705, 2011. 3026, 3027
Dyachenko, A. I. and Zakharov, V. E.: A dynamical equation for water waves in one horizontal dimension, Eur. J. Mech. B-Fluid., 32, 17-21, 2012. 3026, 3027
Dyachenko, A. I., Lvov, Y. V., and Zakharov, V. E.: Five-wave interaction on the surface of deep fluid, Physica D, 87, 233-261, 1995. 3025
Dyachenko, A. I., Zakharov, V. E., and Kachulin, D. I.: Collision of two breathers at surface of deep water, available at: http://arxiv.org/abs/1201.4808 (last access: 28 June 2013), 2012. 3026
Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M.: Method for solving the Ko-rteweg-de Vries equation, Phys. Rev. Lett., 19, 1095-1097, 1967. 3024
Kadomtsev, B. B. and Petviashvili, V. I.: Acoustic turbulence, Soviet Physics Doklady, 18, 115116, 1973. 3024
Kaup, D. J.: A higher-order water-wave equation and the method for solving it, Prog. Theor. Phys., 54, 396-408, 1975. 3024
Konopelchenko, B. G.: Solitons in Multidimensions, World Scientific, Singapore, 1993.
Osborne, A. R.: Nonlinear ocean waves and the inverse scattering transform, Int. Geophysics, 97, 917 pp., 2010. 3024
Rumpf, B., Newell, A. C., and Zakharov, V. E.: Turbulent transfer of energy by radiating pulses, Phys. Rev. Lett., 103, 713-744, 2009. 3025
Zakharov, V. E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phy., 9, 190-194, 1968. 3024, 3026, 3027

Zakharov, V. E.: On stochastization of one-dimensional chains of nonlinear oscillators, Sov. Phys. JETP-USSR, 38, 108-110, 1974. 3024
Zakharov, V. E. and Shabat, A. B.: Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP-USSR, 34, 6269, 1972. 3024
30 Zakharov, V. E. and Shabat, A. B.: Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II., Funct. Anal. Appl.+, 13, 166-174, 1979. 3024

NHESSD

1, 3023-3043, 2013

Collisions of two breathers

A. I. Dyachenko et al.

Title Page

Abstract

Introduction

Conclusions
References

Figures

14

4

Back
Close

Full Screen / Esc

Printer-friendly Version
Interactive Discussion

Zakharov, V. E. and Schulman, E. I.: Integrability of nonlinear systems and perturbation theory, in: What is Integrability?, Springer Series Nonlinear Dynamics, edited by: Zakharov, V. E., Springer-Verlag, Berlin, 185-250, 1991. 3025
Zakharov, V. E. and Kuznetsov, E. A.: Optical solitons and quasisolitons, Sov. Phys. JETPUSSR, 86, 1035-1046, 1998. 3025

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Title Page

Full Screen / Esc

Printer-friendly Version
Interactive Discussion

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Title Page

Abstract	Introduction
Conclusions	References
Tables	Figures
$\mathbf{I 4}$	
$\mathbf{4}$	
Back	Close
Full Screen / Esc	

Printer-friendly Version

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Full Screen / Esc
Fig. 2. Modulus of $b(x)$ with $V=1 / 16$ and $\Omega=4.01$. (Recall envelope in the Nonlinear Schredinger Equation.)

Printer-friendly Version

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Title Page

Abstract	Introduction
Conclusions	References
Tables	Figures
$\mathbf{I 4}$	
$\mathbf{4}$	
Back	Close
Full Screen / Esc	

Printer-friendly Version

Fig. 4. Initial condition with two breathers.

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
I4	
$\mathbf{4}$	
Back	Close
Full Screen / Esc	

Printer-friendly Version
Interactive Discussion

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Title Page

Full Screen / Esc

Printer-friendly Version

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Title Page

Full Screen / Esc

Printer-friendly Version

Fig. 7. Fourier spectrum at the moment of collision.

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
I4	
$\mathbf{4}$	
Back	Close
Full Screen / Esc	

Printer-friendly Version

Fig. 8. Modulus of $b(x)$ for two point of time. Solid line corresponds the initial statement $(t=0)$, dashed line corresponds to the state after 100 breather collisions ($t \sim 88000$).

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Full Screen / Esc

Printer-friendly Version

NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Title Page

Full Screen / Esc

Printer-friendly Version

```
Interactive Discussion
```


NHESSD

1, 3023-3043, 2013

Collisions of two breathers
A. I. Dyachenko et al.

Title Page

Abstract

Introduction

Conclusions
References

Tables
Figures

Back
Close

Full Screen / Esc

Fig. 10. Modulus of $b(x)$ for two point of time. Solid line corresponds the initial statement $(t=0)$, dashed line corresponds to the state after 100 breather collisions ($t \sim 88000$).

Printer-friendly Version

[^0]: ${ }^{1}$ Part of the numerical results were put in (Dyachenko et al., 2012).

[^1]: ${ }^{2}$ There was the misprint in the articles (Dyachenko and Zakharov, 2011, 2012), coefficient for quartic term in the hamiltoian must be $\frac{1}{2}$ instead of $\frac{1}{4}$.

